Instruction manual KOD -Plus- Neo 1109 F1066K # **KOD-Plus-Neo** KOD-401 200 U 200 reactions **Store at -20°C** ### **Contents** - [1] **Introduction** - [2] Components - [3] Quality testing - [4] Primer design - [5] Cloning of PCR products - [6] **Protocol** - 1. Standard reaction setup - 2. Cycling conditions - [7] Examples - [8] Troubleshooting - [9] References - [10] Related products ## **CAUTION** All reagents in this kit are intended for research purposes. Do not use for diagnostic or clinical purposes. Please observe general laboratory practices and safety precautions while using this kit. ## [1] Introduction #### **Description** KOD -Plus- Neo is based on a DNA polymerase from the hyperthermophilic Archaeon *Thermococcus kodakaraensis* KOD1¹⁾²⁾. This polymerase exhibits excellent PCR fidelity because of its efficient 3'→5' exonuclease activity (proof reading activity). This product contains a unique "elongation enhancer" that suppresses the "plateau effect" produced by conventional PCR. Therefore, this reagent exhibits greater amplification efficiency and elongation capability compared to the previous version of KOD -Plus- (Code No. KOD-201). Moreover, this enzyme requires only 30 sec/kb for the PCR extension step. This facilitates the long range PCR. This enzyme contains two anti-KOD DNA polymerase antibodies that inhibit polymerase and $3' \rightarrow 5'$ exonuclease activity, thus allowing for Hot Start PCR³⁾. This polymerase generates blunt-end PCR products due to $3' \rightarrow 5'$ exonuclease (proof-reading) activity. #### **Features** - -KOD -Plus- Neo exhibits 80-fold greater PCR fidelity than Taq DNA polymerase. - -"Elongation enhancer" enables greater amplification efficiency and elongation capability (up to 24 kb from human genomic DNA) compared to conventional PCR. - -Requires only 30 sec/kb for the PCR extension step. - -2-step cycle conditions can be used for amplification using ≥ 20 mer primers (melting temperatures, Tm >63°C). JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140 *The Nearest Neighbor method is recommended to calculate the Tm of primers. The Tm values in this manual were calculated using this method with the following parameters. Na⁺ concentration: 50 mM Oligonucleotide concentration: 0.5 µM ## [2] Components | KOD -Plus- Neo (1.0 U/μl)* | 200 μl x 1 | |------------------------------------|------------| | 10 x PCR Buffer for KOD -Plus- Neo | 1 ml x 1 | | 25 mM MgSO ₄ | 1 ml x 1 | | 2 mM dNTPs | 1 ml x 1 | ^{*}The enzyme solution contains anti-KOD DNA polymerase antibodies that neutralize polymerase and 3'→5' exonuclease activity. ## [3] Quality Testing Quality control was performed by amplifying the human β-globin gene (17.5 kb). ## [4] Primer Design - -Primers should be 22-35 bases with Tm >63°C. - -Optimal GC content of primers is 45–60%. Ideal GC contents of the 5' half and the 3' half are 60–70% and 40–50%, respectively. - -Primers for long target amplification should be 25-35 bases with Tm >65°C. - -Primers containing inosine cannot be used. - -The Tm of primers should be calculated using the Nearest Neighbor method. The Tm values in this manual were calculated using this method with the following parameters. Na⁺ concentration: 50 mM Oligonucleotide concentration: 0.5 μM # [5] Cloning of PCR products - -KOD -Plus- Neo generates blunt-end PCR products due to its 3'→5' exonuclease (proof-reading) activity. Therefore, PCR products can be cloned according to blunt-end cloning methods. - -PCR products of KOD -Plus- Neo should be purified prior to restriction enzyme treatments. The 3'→5' exonuclease activity of KOD DNA polymerase remains at the end of the PCR reaction. - -The dedicated TA cloning kit "TArget clone™ -Plus- (Code No. TAK-201)" is recommended for the cloning of blunt end PCR products produced by KOD DNA polymerase (see [10] Related product). **JAPAN** TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140 ## [6] Protocol ## 1. Standard reaction setup The following procedure is designed for use with the components provided in this kit. Before mixture preparation, all components should be completely thawed, except for the enzyme solution. | Component | Volume | Final Concentration | |-------------------------------|-------------|---| | 10x Buffer for KOD -Plus- Neo | 5 μl | 1x | | 2 mM dNTPs* | 5 μl | 0.2 mM each | | 25 mM MgSO ₄ | 3 µl | 1.5 mM | | 10 pmol/μl Primer #1 | 0.75–1.5 μl | 0.15-0.3 μΜ | | 10 pmol/μl Primer #2 | 0.75–1.5 μl | 0.15-0.3 μΜ | | Template DNA | Xμl | Genomic DNA \leq 200 ng/50 μ l
Plasmid DNA \leq 50 ng/50 μ l
cDNA \leq 200 ng (RNA equiv.)/50 μ l | | PCR grade water | Yμl | | | KOD -Plus- Neo (1.0 U/μl) | 1 μ1 | 1.0 U/50 μl | | Total reaction volume | 50 µl | · | ^{*}Do not use dNTPs from other kits or companies. #### Notes: - -Optimal primer concentration is 0.3 μ M. In the case of long target (\geq 10 kb), a reduced primer concentration (0.15 μ M) may give more effective amplification. - -The addition of DMSO (final conc. 2–5%) is beneficial for the amplification of GC-rich targets. Decreased PCR fidelity does not occur in the presence of DMSO (See step 2, Cycling conditions). - -Contaminating RNA in cDNA or genomic DNA inhibits the PCR reaction by chelating Mg²⁺. PCR should be performed using template DNA containing <200 ng RNA. - -Quality of template DNA should be checked by electrophoresis. The length and purity of template DNA affects amplification results. - -Templates containing uracil cannot be used for amplification. - -For PCR reactions, thin-wall tubes are recommended. A total reaction volume of 50 $\,\mu$ l is also recommended. ## **2. Cycling conditions** [Important] Two-step cycle conditions with primers ≥20 mer, Tm >63°C are recommended for effective amplification using KOD -Plus- Neo. ## A. 2-step cycle If the Tm value of the primer is over 63°C, a 2-step cycle is recommended. | < 2-step cycle > | | | |-------------------|------------------------|--------------| | Pre-denaturation: | 94°C, 2 min | | | Denaturation: | 98°C, 10 sec | 25-45 cycles | | Extension: | 68°C, 30 sec/kb | | #### Notes: - -For amplification using low copy templates or amplification of long targets (>10 kb), longer extension times (up to 1min/kb) or higher Mg concentrations (up to 2 mM final concentration) may increase the yield. - -The addition of DMSO (final conc. 2–5%) may be beneficial for the amplification of GC-rich targets. The concentration of DMSO used should be determined according to the Tm of the primers. ``` <25 mer or Tm <68°C: up to 2% \geq25 mer or Tm \geq68°C: up to 5% ``` -In the case of amplification failure a 3-step cycle may be required. ## B. 3-step cycle When the Tm of primers are less than 63°C, a 3-step cycle should be used. | < 3-step cycle > | | | |-------------------|-----------------------|--------------| | Pre-denaturation: | 94°C, 2 min | | | Denaturation: | 98°C, 10 sec | ← | | Annealing: | [Tm]°C, 30 sec | 25-45 cycles | | Extension: | 68°C, 30sec/kb | | #### Notes: - -Amplification using low copy templates or amplification of long targets (>10 kb) may be improved by increasing the extension time (up to 1 min/kb) or Mg concentration (up to 2 mM final concentration). - -The addition of DMSO (final conc. 2–5%) might be beneficial for the amplification of GC-rich targets. ## C. Step-down cycle If non-specific amplification is observed with 2-step and 3-step cycle conditions (extra or smeared bands observed after electrophoresis of PCR product), then the step-down cycle may improve specificity. | < Step-down cycle | > | | |-------------------|-------------------------|--------------| | Pre-denaturation: | 94°C, 2 min | | | Denaturation: | 98°C, 10 sec | 5 cycles | | Extension: | 74°C, 30 sec/kb | s cycles | | Denaturation: | 98°C, 10 sec | 5 cycles | | Extension: | 72°C, 30 sec/kb | s eyeles | | Denaturation: | 98°C, 10 sec | 5 cycles | | Extension: | 70°C, 30 sec/kb | s cycles | | Denaturation: | 98°C, 10 sec | 15-30 cycles | | Extension: | 68°C , 30 sec/kb | | | Extension: | 68°C, 7 min | | #### Notes: -Amplification from low copy templates or amplification of long targets (>10 kb), may be improved by increasing the extension time (up to 1 min/kb) or the Mg concentration (up to 2 mM final concentration). -The addition of DMSO (final conc. 2–5%) might be effective for the amplification of GC-rich targets. The DMSO concentration should be determined according to the Tm of primers. <25 mer Tm <68°C: up to 2% ≥25 mer Tm \geq 68°C: up to 5% ## [7] Examples #### Performance data 1. **PCR** fidelity Mutation frequency was measured by sequence analysis of human β-globin gene products amplified from human genomic DNA via TA cloning with TArget Clone™ -Plus-. KOD -Plus- Neo showed excellent fidelity and the mutation frequency was equal to that of the previous version of the enzyme (KOD -Plus-). (Number of misincorporated bases/100,000 bases) #### Performance data 2. **Elongation capability** Targets of various sizes were amplified from human genomic DNA by several PCR enzymes according to the recommended conditions of each enzyme. KOD -Plus- Neo successfully amplified targets up to 17.5 kb. Cycling conditions of KOD - Plus- Neo] 94°C, 2 min. 98°C, 10 sec. 30 cycles 68°C, 30 sec./ kb 5: Step-down cycle 1: Human β-globin (1.3 kb) 2: Human β-globin (2.7 kb) 3: Human \(\beta\)-globin (3.6 kb) 4: Human β-globin (8.5 kb) 5: Human β-globin (17.5 kb) M: 1 kb DNA Ladder ## Performance data 3. Amplification from low copy templates Four genes were amplified using 0.5 ng cDNA template (RNA equiv.). Templates were synthesized from total RNA of HeLa cells. KOD -Plus- Neo successfully amplified all genes. ## Performance data 4. Elongation rate The β -globin gene (3.6 kb) was amplified from human genomic DNA (50 ng) using various extension times. KOD -Plus- Neo can amplify a 3.6 kb target using an extension time of 30 sec/kb. ## Application data 1. Amplification of various protein kinase targets Various protein kinase open reading frames (ORFs) were amplified using cDNA synthesized from total RNA of HeLa cells. KOD -Plus- Neo successfully amplified all targets. ## Application data 2. Amplification of long targets Long targets were amplified from human genomic DNA using various concentrations of primers. Excessive amounts of primer inhibit the amplification. Therefore, long targets (>10 kb) should be amplified using lower primer concentrations of approximately 0.15 μ M. ## [Cycling condition] β-globin (17.5 kb) :Step-down cycle (Extension time: 30 sec. /kb) tPA (24.0 kb) :Step-down cycle (Extension time: 60 sec./kb) ## [8] Troubleshooting | Symptom | Cause | Solution | |-----------------------------|---|---| | | Cycling conditions are not suitable. | Using the 3-step cycle, lower annealing temperature incrementally to a maximum of Tm-5–10°C. Prolong the extension time to 1 min/kb. Increase the number of cycles by 2–5 cycles. | | | Mg concentration is low. | Increase the Mg concentration up to 2 mM. | | No PCR product/low yield | High GC content of target sequence. | Add DMSO 2–5%. [See Cycling conditions] | | | Quality and/or quantity of primers is not sufficient. | Decrease the primer concentration incrementally down to 0.15 µM. | | | | Use fresh primers. Redesign primers. | | | Quality and/or quantity of template DNA is not | Check the quality of template DNA. RNA inhibits amplification. | | | sufficient. | Increase the amount of template DNA. | | | Enzyme concentration is low. | Increase enzyme concentration up to 1.5–2.0 U/50 µl. | | | Cycling conditions are not | Decrease the number of cycles by 2–5 cycles. | | | suitable. | Change from 3-step cycle to 2-step cycle. | | | | Change from 2-step cycle to Step-down cycle. | | Consequince/section leaved | Quality of primers is not | Use fresh primers. | | Smearing/extra band | sufficient. | Redesign primers. | | | Too much template DNA. | Reduce the amount of template DNA. | | | Too much Mg. | Reduce MgSO ₄ incrementally down to 1.0 mM. | | | Too much enzyme. | Reduce enzyme concentration to 0.5–0.8 U/50 μl. | | Poor TA cloning efficiency. | PCR products have | Clone the PCR products according to general | | | blunt-ends. | blunt-end cloning guidelines. | | | | Use TArget clone [™] -Plus- (Code No.TAK-201) | | | | [See Related products]. | ## [9] Reference - 1) Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, and Imanaka T., *Appl Environ Microbiol.*, 63: 4504-10 (1997) - Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T and Kai Y, J Mol Biol., 306: 469-77 (2001) - 3) Mizuguchi H, Nakatsuji M, Fujiwara S, Takagi M and Imanaka T, *J Biochem.*, 126: 762-8 (1999) - Fujii S, Akiyama M, Aoki K, Sugaya Y, Higuchi K, Hiraoka M, Miki Y, Saitoh N, Yoshiyama K, Ihara K, Seki M, Ohtsubo E and Maki H, *J. Mol. Biol.*, 289: 835-850 (1999) ## [10] Related products | Product name | Package | Code No. | |----------------------|-----------------|----------| | TArget Clone™ -Plus- | 10 reactions | TAK-201 | | 10x A-attachment mix | 25 reactions | TAK-301 | | Ligation high Ver.2 | 750 µl | LGK-201 | | | (100 reactions) | | TArget CloneTM -Plus- is a high efficient TA cloning kit. The kit can be applied to the TA cloning of blunt-end PCR products amplified using KOD -Plus- [Code No. KOD-201], KOD -Plus- Neo [Code No. KOD-401] or KOD FX [Code No. KFX-101]. The kit contains pTA2 Vector, 2x Ligation Buffer, T4 DNA Ligase and 10x A-attachment Mix. 10 x A-attachment mix is a reagent comprising anti-KOD DNA polymerase antibody specific to KOD 3'→5' exonuclease activity (proof-reading activity), as well as Taq DNA polymerase, which exhibits terminal transferase activity. PCR products from KOD -Plus- [Code No. KOD-201] and KOD FX [Code No. KFX-101] possess blunt ends due to 3'→5' exonuclease activity of the KOD DNA polymerase. The 10 x A-attachment mix allows for PCR products to acquire overhanging dA at the 3'-ends. Products with 3'-dA overhangs can be directly cloned into arbitrary T-vectors using ligation reagents, such as Ligation high Ver.2 [Code No. LGK-201]. Fig. Principle of the 10 x A-attachment mix ### NOTICE TO PURCHASER: LIMITED LICENSE Use of this product is covered by one or more of the following US patents and corresponding patent claims outside the US: 5,079,352, 5,789,224, 5,618,711, 6,127,155 and claims outside the US corresponding to US Patent No. 4,889,818. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim (such as the patented 5' Nuclease Process claims in US Patents Nos. 5,210,015 and 5,487,972), no right to perform any patented method, and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp